If $\sin \,\theta  + \sqrt 3 \cos \,\theta  = 6x - {x^2} - 11,x \in R$ , $0 \le \theta  \le 2\pi $ , then the equation has solution for

  • A

    one value of $x$

  • B

    two value of $x$

  • C

    infinite value of $x$

  • D

    no value of $x$

Similar Questions

If $\mathrm{n}$ is the number of solutions of the equation

$2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$

and $S$ is the sum of all these solutions, then the ordered pair $(\mathrm{n}, \mathrm{S})$ is :

  • [JEE MAIN 2021]

If $\tan m\theta = \tan n\theta $, then the general value of $\theta $ will be in

The equation $\sin x + \sin y + \sin z = - 3$ for $0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$ $0 \le z \le 2\pi $, has

Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$

$sin^{2n}x + cos^{2n}x$ lies between